Power sums over subspaces of finite fields
نویسندگان
چکیده
Article history: Received 31 August 2011 Revised 16 December 2011 Accepted 11 April 2012 Available online 25 April 2012 Communicated by L. Storme MSC: 05B25 11T24 11T71
منابع مشابه
Pure Gauss Sums over Finite Fields
New classes of pairs e,p are presented for which the Gauss sums corresponding to characters of order e over finite fields of characteristic p are pure, i.e., have a real power. Certain pure Gauss sums are explicitly evaluated. §
متن کاملPower sums of polynomials over finite fields and applications: A survey
In this brief expository survey, we explain some results and conjectures on various aspects of the study of the sums of integral powers of monic polynomials of a given degree over a finite field. The aspects include non-vanishing criteria, formulas and bounds for degree and valuation at finite primes, explicit formulas of various kind for the sums themselves, factorizations of such sums, genera...
متن کاملVector Spaces, Modules over Chinese Rings, and Monoids as Unions of Proper Subobjects
Given a vector space V over a field (of size at least 1), we find a sharp bound for the minimal number (or in general, indexing set) of subspaces of a fixed (finite) codimension needed to cover V . If V is a finite set, this is related to the problem of partitioning V into subspaces. We also consider the analogous problem (involving proper subobjects only) for direct sums of cyclic monoids, cyc...
متن کاملRank properties of subspaces of symmetric and hermitian matrices over finite fields
We investigate constant rank subspaces of symmetric and hermitian matrices over finite fields, using a double counting method related to the number of common zeros of the corresponding subspaces of symmetric bilinear and hermitian forms. We obtain optimal bounds for the dimensions of constant rank subspaces of hermitian matrices, and good bounds for the dimensions of subspaces of symmetric and ...
متن کاملAlgebraic Trace Functions over the Primes
We study sums over primes of trace functions of `-adic sheaves. Using an extension of our earlier results on algebraic twist of modular forms to the case of Eisenstein series and bounds for Type II sums based on similar applications of the Riemann Hypothesis over finite fields, we prove general estimates with power-saving for such sums. We then derive various concrete applications.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Finite Fields and Their Applications
دوره 18 شماره
صفحات -
تاریخ انتشار 2012